If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3=63
We move all terms to the left:
2x^2+3-(63)=0
We add all the numbers together, and all the variables
2x^2-60=0
a = 2; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·2·(-60)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{30}}{2*2}=\frac{0-4\sqrt{30}}{4} =-\frac{4\sqrt{30}}{4} =-\sqrt{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{30}}{2*2}=\frac{0+4\sqrt{30}}{4} =\frac{4\sqrt{30}}{4} =\sqrt{30} $
| -3+y/4=8 | | 5x-4+2x-8=2 | | f=9/5f-32 | | -35x+1=4 | | 3b+1.19=7.28 | | -5g-10=g+2 | | X²+15x=0 | | 5x-2(x+5=11 | | 2(x-6)=2x+5+7 | | 6x+4=3x+1= | | 10(x=4)=15x+9-12x | | d+9/4=8 | | t/3+10=12 | | 7+-3x=-5 | | 7x+5=-3x-2 | | 5f+2f=28 | | -2j+-7=13 | | 2(3x-5)=20-6x | | -(3x-5)=4(17+x) | | j3-2=2 | | 3(x-4+6=2(x-2)+5 | | -7.7d+3.68=-8.5d | | 2n-2+n=2n+4 | | t3+10=12 | | 2x+6-8=11 | | 2b−6=–2 | | 2(m+3)=-12 | | 10−2j=–j | | 2x+4(2)=8 | | 25y=15y+76 | | 2(m+3)=3m-16 | | X+18=16-16-4(x+7) |